Палитры OpenComputers
Немногие знают, как работают палитры в OpenComputers. Расскажу здесь, как избавиться от необходимости прописывать гектары цветов в палитре, покажу, как упаковываются цвета в OpenComputers и дам пару алгоритмов для работы с индексами.
Сразу условимся, что индексы палитр у нас будут начинаться с нуля.
На каждой из трёх уровней видеокарт и мониторов своя поддерживаемая палитра цветов. Будем двигаться снизу вверх.
Первый уровень
Палитра состоит из двух цветов: чёрного и заданного в конфиге (по умолчанию белого). Конвертация цвета в индекс палитры тривиальна:
- цвет нулевой — и индекс нулевой (чёрный цвет);
- цвет ненулевой — индекс единичный.
Цвет в индекс (deflate) и обратно (inflate) превращать — одно удовольствие:
local palette = { 0x000000, CONFIG.monochromeColor } local function t1deflate(index) if index == 0 then return 0 else return 1 end end local function t1inflate(index) return palette[index + 1] end
Как и говорил.
Второй уровень
В палитре второго уровня имеется 16 закреплённых цветов:
local palette = {0xFFFFFF, 0xFFCC33, 0xCC66CC, 0x6699FF, 0xFFFF33, 0x33CC33, 0xFF6699, 0x333333, 0xCCCCCC, 0x336699, 0x9933CC, 0x333399, 0x663300, 0x336600, 0xFF3333, 0x000000}
При конвертации цвета в индекс палитры вернётся ближайший к данному цвет из палитры. Насколько цвета друг к другу близки, рассчитывается по специальной формуле, которая учитывает, что человеческий глаз лучше воспринимает зелёный, нежели красный и синий. В коде этим занимается функция delta. Вот как она выглядит (вместе с функций extract, выделяющей из числа вида 0xABCDEF числа 0xAB, 0xCD, 0xEF):
local function extract(color) color = color % 0x1000000 local r = math.floor(color / 0x10000) local g = math.floor((color - r * 0x10000) / 0x100) local b = color - r * 0x10000 - g * 0x100 return r, g, b end local function delta(color1, color2) local r1, g1, b1 = extract(color1) local r2, g2, b2 = extract(color2) local dr = r1 - r2 local dg = g1 - g2 local db = b1 - b2 return (0.2126 * dr^2 + 0.7152 * dg^2 + 0.0722 * db^2) end
Теперь можно конвертировать цвет в индекс палитры. Суть такова: выбираем из двух цветов ближайший и возвращаем его.
local function t2deflate(color) -- Сначала проверяем, совпадает ли данный цвет -- с каким-либо из палитры for idx, v in pairs(palette) do if v == color then return idx end end -- Составляем таблицу разниц между цветами local deltas = {} for idx, v in pairs(palette) do table.append(deltas, {idx, delta(v, color)}) end -- Сортируем по увеличению разницы table.sort(deltas, function(a, b) return a[2] < b[2] end) -- Первый элемент будет с наименьшей разницей, -- то есть искомый. Возвращаем индекс. return deltas[1][1] - 1 end
Обратная же процедура — превращение индекса палитры в цвет — неизменна.
local t2inflate = t1inflate
Третий уровень
Палитра третьего уровня содержит уже 256 цветов: первые 16 цветов изменяются, а остальные соответствуют цветам палитры RGB-6-8-5. Это означает, что можно смешивать 6 оттенков красного, 8 оттенков зелёного и 5 оттенков синего. В общем-то, довольно очевидна причина такого выбора: человеческий глаз лучше всего различает оттенки зелёного и хуже всего — оттенки синего.
В любом случае, здесь алгоритмец будет посложнее. Сначала нужно сгенерировать палитру.
Начнём с первых 16 цветов. Они не включаются в палитру RGB-6-8-5, поэтому их заполнять нужно отдельно. В OpenComputers по умолчанию они содержат оттенки серого. Так как чёрный и белый уже включены в основную, зафиксированную палитру, то заново их дублировать смысла нет.
local palette = {} -- grayscale for i = 1, 16, 1 do palette[i] = 0xFF * i / (16 + 1) * 0x10101 end
Таким образом в таблице получаются следующие оттенки серого:
0x0F, 0x1E, 0x2D, 0x3C, 0x4B, 0x5A, 0x69, 0x78, 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0xF0
Эти цвета мы записываем в индексы от 0 до 15. Теперь нужно сгенерировать остальные цвета — они не изменяются. Здесь будет посложнее.
Посмотрим на картинку с палитрой:
В OpenComputers левая верхняя ячейка палитры (0x000000) имеет индекс 16, а правая нижняя (0xFFFFFF) имеет индекс 255. Индексы распределяются слева направо, сверху вниз. То есть правая верхняя ячейка (0x00FFFF) имеет индекс 55, а вторая сверху и левая (0x330000) — это номер 56. Отсюда вытекает следующий алгоритм нахождения цвета: сначала найти индексы отдельно по R, G, B, затем для каждого из этих трёх индексов найти соответствующий ему оттенок цвета, а затем всё сложить.
for idx = 16, 255, 1 do local i = idx - 16 local iB = i % 5 local iG = (i / 5) % 8 local iR = (i / 5 / 8) % 6 local r = math.floor(iR * 0xFF / (6 - 1) + 0.5) local g = math.floor(iG * 0xFF / (8 - 1) + 0.5) local b = math.floor(iB * 0xFF / (5 - 1) + 0.5) palette[idx + 1] = r * 0x10000 + g * 0x100 + b end
Идея следующая. Каждый из трёх каналов принимает значение от 0 до 255 (0xFF). Разбиваем их на определённое число ступеней (по-умному — квантуем): 6 для красного, 8 для зелёного и 5 для синего. Например, синий канал мы разобьём так:
- 0/4 · 255 = 0
- 1/4 · 255 = 63.75
- 2/4 · 255 = 127.5
- 3/4 · 255 = 191.25
- 4/4 · 255 = 255
В знаменателе тут 4, а не 5, потому что считаем с нуля. Затем округляем до ближайшего целого конструкцией math.floor(x + 0.5). Перебрав все комбинации, мы получим все 6 × 5 × 8 = 240 цветов неизменяемой части палитры.
Всё. Палитра есть, теперь можно, наконец-то, конвертировать индексы между цветами.
Из индексов получить цвет довольно просто. Достаточно использовать ту же функцию, что и для предыдущих уровней:
t3inflate = t2inflate
С обратной же конвертацией всё несколько сложнее. Функция, используемая в OC, подбирает ближайший цвет хитрым алгоритмом, который я привожу ниже.
local function t3deflate(color) local paletteIndex = t2deflate(color) -- Если цвет из палитры, то используем значение выше for k, v in pairs(palette) do if v == color then return paletteIndex end end -- Иначе используем хитромудрый код local r, g, b = extract(color) local idxR = math.floor(r * (6 - 1) / 0xFF + 0.5) local idxG = math.floor(g * (8 - 1) / 0xFF + 0.5) local idxB = math.floor(b * (5 - 1) / 0xFF + 0.5) local deflated = 16 + idxR * 8 * 5 + idxG * 5 + idxB if (delta(t3inflate(deflated % 0x100), color) < delta(t3inflate(paletteIndex & 0x100), color)) then return deflated else return paletteIndex end end
В общем-то, это всё. Показал портированный со Scala на Lua код, который используется в OpenComputers. С помощью этого можно оптимизировать операции с экраном, выбирая поддерживаемые монитором цвета. И заодно избавиться от таблиц цветов, которые некоторые буквально берут и копипастят в файл, даже не задумываясь об изменяемых цветах палитры.
Особенно это важно, когда берётся значение цвета через gpu.get, потому что следующий код всегда вернёт false:
local gpu = require("component").gpu gpu.setForeground(0x20AFFF) gpu.setBackground(0x20AFFF) gpu.set(1, 1, "HI") return select(2, gpu.get(1, 1)) == 0x20AFFF
И всё потому, что gpu.get возвращает уже приведённый к индексу из палитры цвет. А 0x20AFFF в палитре, если не менять первые 16 цветов, не имеется.
Enjoy :P
- 12
3 комментария
Рекомендуемые комментарии