Среди всех компонентов в OC у интернет-платы самый ужасный API. Неудивительно, что правильно использовать его умеют немногие. Даже за Vexatos мне приходилось чинить tape.lua — программку для записи кассет. Плюс в ирке нередко спрашивают, как отправить HTTP-запрос на сервер. Значит, пришло время написать, как же всё-таки использовать интернет-плату.
Гайд строится на следующих предположениях (сорри за педантизм):
- Вы умеете прогать на Lua, в том числе знаете о двух основных способах возвращать ошибку.
- Вы писали уже программы для OpenComputers, которые использовали API этого мода или OpenOS, особенно либу event.
- Вы как-то использовали (или пытались использовать) интернет-карточку в программах.
- Секции 1, 3: вы понимаете основные принципы HTTP.
- Секции 2, 4: вы понимаете, как пользоваться TCP-сокетами и зачем (не обязательно в Lua).
- Секция 4: вас не смущает setmetatable и вы понимаете, как делать ООП на прототипах.
- Секции 2, 4: у вас OC 1.6.0 или выше.
- Секции 1, 3, 5: у вас OC 1.7.5 или выше.
- Текущая версия мода — 1.7.5, а в новой ничего не изменилось.
У инет-карты есть две разных фичи — HTTP-запросы и TCP-сокеты. Кратко пробежимся по API и затем разберём детальнее применение. Рассматривать я буду API компонента: часто используют require("internet") — это не компонент, а обёртка.
1. Отправка HTTP-запросов: component.internet.request
У этого метода 4 параметра:
- URL, на который надо послать запрос. На всякий случай, URL начинается со схемы (http: или https:), после которого идёт адрес хоста (например: //localhost, //127.0.0.1, //[::1], //google.com:443), за которым следует путь (/my-file.html). Пример: https://computercraft.ru/blogs/entry/666-profiliruem-programmy-pod-oc/.
- Данные запроса. Оно же тело запроса. Если мы отправляем GET/HEAD-запрос, то этот аргумент надо установить в nil.
- Хедеры, которыми запрос сопровождать. Можно поставить nil, тогда там по минимуму дефолтные подтянутся. Иначе передавать надо таблицу. Её ключи — это названия хедеров. Например, {["Content-Type"] = "application/json"}.
- Метод запроса. Если же этот аргумент не передавать, то возьмётся по дефолту GET или POST: это зависит от того, пуст ли аргумент 2 или нет.
Если возникла ошибка, метод вернёт nil и сообщение об ошибке.
Если же всё нормально, то метод вернёт handle — табличку с функциями. Вот что это за функции:
-
handle.finishConnect() — проверяет, подключены ли мы к серверу.
- Если да, то вернёт true.
- Если к серверу ещё не подключены, то вернёт false.
- Если же возникла ошибка (например, 404 вернул сервер или закрыл соединение), то вернёт nil и сообщение об ошибке. Например, nil, "connection lost".
- В доках написано, что функция ошибку пробрасывает. На самом деле нет: она вообще не бросает исключения.
-
handle.response() — возвращает мета-данные ответа с сервера.
- Если соединение ещё не установлено, вернёт nil.
- Если возникла ошибка, вернёт nil и сообщение об ошибке. Например, nil, "connection lost".
-
В противном случае возвращает 3 значения:
- Код ответа (например, 200).
- Статус (например, "OK").
- Таблицу с хедерами, которые отправил сервер. Выглядит примерно так: {["Content-Type"] = {"application/json", n = 1}, ["X-My-Header"] = {"value 1", "value 2", n = 2}}. Выпишу отдельно, что значения таблицы — это не строки, а ещё одни таблицы.
-
handle.read([n: number]) — читает n байт (если n не задано, то сколько сможет).
- Если компьютер ещё не успел получить данные, то отдаст "".
- Если возникла ошибка, то выдаст nil и сообщение об ошибке. Например, nil, "connection lost".
- Если сервер закрыл соединение, то вернёт nil.
- В противном случае отдаст строку с частью ответа.
- handle.close() — закрывает соединение.
2. TCP-сокеты: component.internet.connect
У метода есть 2 параметра:
- Адрес хоста. Например, 127.0.0.1. Здесь также можно указать порт: google.com:80.
- Порт. Если в первом аргументе порта нет, то второй параметр обязателен.
Если возникла ошибка, он также вернёт nil и сообщение. Иначе возвращает handle — табличку с функциями. Вот такими:
- handle.finishConnect() — то же, что и выше.
- handle.read([n: number]) — то же, что и выше.
-
handle.write(data: string) — отправляет data по сокету на сервер. Возвращает число переданных байт.
- Если соединение не установлено, это число равно 0.
- handle.close() — то же, что и выше.
- handle.id() — возвращает id сокета.
3. Как правильно отправить HTTP-запрос на сервер и получить ответ
Чтобы было интереснее, реальная задача: написать аналог pastebin, только вместо пастбина использовать https://clbin.com/. Особенности:
- Для взаимодействия с сайтом нужно отправлять HTTP-запросы: GET и POST. Это всё OC умеет.
- Чтобы скачать, достаточно простого GET по ссылке. Это можно сделать даже через wget.
- А вот чтобы отправить файл, надо использовать MIME-тип multipart/form-data. OC не умеет из коробки такие формы отправлять. Мы напишем минимальную реализацию, которая бы нас устроила.
- Не забываем, что этот MIME-тип нужно установить в хедер.
- При этом мы хотим красиво обработать все ошибки и не допустить ошибок сами.
Таким образом, использовать будем практически все фичи.
3.1. multipart/form-data
Порядок особенностей нам не важен, поэтому начинаем с самого скучного. Сделаем функцию, которая принимает данные и обрамляет их согласно формату multipart/form-data.
local function generateBorder(str) local longestOccurence = nil for match in str:gmatch("%-*cldata") do if not longestOccurence or #match > #longestOccurence then longestOccurence = match end end return longestOccurence and ("-" .. longestOccurence) or "cldata" end local function asFormData(str, fieldName) local border = generateBorder(str) local contentType = "multipart/form-data; boundary=" .. border return ([[ --%s Content-Disposition: form-data; name="%s" %s --%s--]]):format( border, fieldName, str, border ), contentType end
Так как это не туториал по интернет-стандартам, вдаваться в детали реализации не буду.
С помощью asFormData можно содержимое файла превратить в тело HTTP-запроса. Мы будем вызывать asFormData(str, "clbin"), ибо этого требует сайт.
Кроме того, эта функция нам передаст значение хедера Content-Type. Он нам понадобится.
3.2. Взаимодействие с сайтом
Напишем теперь функцию — обёртку над component.internet.request.
local function request(url, body, headers, timeout) local handle, err = inet.request(url, body, headers) -- ① if not handle then return nil, ("request failed: %s"):format(err or "unknown error") end local start = comp.uptime() -- ② while true do local status, err = handle.finishConnect() -- ③ if status then -- ④ break end if status == nil then -- ⑤ return nil, ("request failed: %s"):format(err or "unknown error") end if comp.uptime() >= start + timeout then -- ⑥ handle.close() return nil, "request failed: connection timed out" end os.sleep(0.05) -- ⑦ end return handle -- ⑧ end
Эту функцию можно прямо брать и копипастить в свои программы. Что она делает:
- ① — отправляем запрос. Сразу обрабатываем ошибку.
- ② — запрос доходит до сервера не мгновенно. Нужно подождать. Чтобы не зависнуть слишком долго, мы засекаем время начала.
- ③ — вызываем finishConnect, чтобы узнать статус подключения.
- ④ — finishConnect вернул true. Значит, соединение установлено. Уходим из цикла.
- ⑤ — finishConnect вернул nil. Мы специально проверяем через status == nil, потому что не нужно путать его с false. nil — это ошибка. Поэтому оформляем его как ошибку.
- ⑥ — проверяем, висим ли в цикле мы слишком долго. Если да, то тоже возвращаем ошибку. Не забываем закрыть за собой соединение.
- ⑦ — нам не нужен бизи-луп. Спим.
- ⑧ — мы не читаем сразу всё в память, чтобы экономить память. Вместо этого отдаём наружу handle.
Частая ошибка — отсутствие элементов ②–⑦. Они нужны. Если до установки соединения мы вызовем handle.read(), то получим nil. Многие программы в этом случае сразу отчаются получить ответ и вернут ошибку. А надо было просто подождать.
3.3. Отправка файла
Функция для отправки файла должна сначала прочесть его содержимое, затем сделать запрос и прочесть ответ. В ответе будет находиться URL файла.
local function sendFile(path) local f, err = io.open(path, "r") -- ① if not f then return nil, ("could not open file for reading: %s"):format(err or "unknown error") end local contents = f:read("*a") -- ② f:close() local data, contentType = asFormData(contents, "clbin") -- ③ local headers = {["Content-Type"] = contentType} local handle, err = request("https://clbin.com", data, headers, 10) -- ④ if not handle then return nil, err end local url = {} -- ⑤ local read = 0 local _, _, responseHeaders = handle.response() -- ⑥ local length for k, v in pairs(responseHeaders) do -- ⑦ if k:lower() == "content-length" then length = tonumber(v) end end while not length or read < length do -- ⑧ local chunk, err = handle.read() if not chunk then if length then -- ⑨ return nil, ("error occured while reading response: %s"):format(err or "unknown error") -- ⑩ end break -- ⑩ end read = read + #chunk -- ⑪ if length and read > length then chunk = chunk:sub(1, length - read - 1) -- ⑫ end table.insert(url, chunk) end handle.close() -- ⑬ return table.concat(url) -- ⑭ end
- ① — открываем файл для чтения. Обрабатываем ошибки.
- ② — считываем всё из файла. Не забываем закрыть его за собой.
- ③ — вызываем заранее написанную функцию asFormData. Мы получаем тело запроса и значение хедера Content-Type. Создаём таблицу хедеров.
- ④ — отправляем наш запрос. Обрабатываем ошибки.
- ⑤ — handle.read может не сразу вернуть весь ответ, а кусочками. Чтобы не забивать память кучей строк, кусочки мы будем класть в таблицу (получится что-то вроде {"htt", "p://", "clbi", "n.co", "m/ab", "cdef"}). Также мы храним число прочитанных байт.
- ⑥ — мы хотим сверять число прочитанных байт с ожидаемым размером ответа. Для этого нам потребуется получить хедеры, отправленными сервером. Вызываем handle.response.
- ⑦ — размер ответа обычно пишется в заголовок Content-Length. Однако сервер может поиграться с регистром. Например, писать content-length или CONTENT-LENGTH. OpenComputers не трогает эти хедеры. Поэтому придётся пройтись по всем ключам таблицы и найти хедер без учёта регистра.
- ⑧ — если length не nil, то это число. Тогда проверяем, что ещё столько байт мы не прочли, и заходим в цикл. Если же Content-Length не задан, то будем считать, что серверу не важно, сколько надо прочесть, и крутимся до упора.
- ⑨ — handle.read может ещё вернуть ошибку. Если нам известна длина, то в силу условия цикла мы прочли меньше, чем ожидали. Сигналим о неудаче. (Закрывать соединение в случае ошибки не требуется.)
- ⑩ — если же длина неизвестна, то считаем, что сервер отдал всё, что мог, ошибку игнорируем и покидаем цикл.
- ⑪ — не забываем обновлять read.
- ⑫ — если сервер случайно отослал нам больше данных, чем надо (а мы знаем, сколько надо: length определён), то излишки обрезаем. Код здесь отрежет с конца строки (read - length) байт.
- ⑬ — закрываем соединение за собой, когда оно больше не нужно.
- ⑭ — наконец, склеиваем таблицу в одну строку.
3.4. Скачивание файлов
Код для скачивания похож на предыдущий. Только вот в память мы записывать ответ с сервера уже не будем. Вместо этого напрямую пишем в файл.
local function getFile(url, path) local f, err = io.open(path, "w") -- ① if not f then return nil, ("could not open file for writing: %s"):format(err or "unknown error") end local handle, err = request(url, nil, nil, 10) -- ② if not handle then return nil, err end local read = 0 local _, _, responseHeaders = handle.response() local length for k, v in pairs(responseHeaders) do if k:lower() == "content-length" then length = tonumber(v) end end while not length or read < length do local chunk, err = handle.read() if not chunk then if length then f:close() -- ③ return nil, ("error occured while reading response: %s"):format(err or "unknown error") end break end read = read + #chunk if length and read > length then chunk = chunk:sub(1, length - read - 1) end f:write(chunk) end f:close() -- ④ handle.close() return true end
- ① — открываем файл, в этот раз для записи. Обрабатываем ошибки.
- ② — отправляем запрос без данных и с дефолтными хедерами. Обрабатываем ошибки.
- ③ — если мы сюда попали, то дальше сделаем ретурн. Поэтому не забываем закрывать за собой файл. (Сокет закрывать не нужно, так как при ошибке он это делает сам.)
- ④ — добропорядочно освобождаем ресурсы.
Чтобы было удобнее копипастить, я оставил повторяющийся код в двух функциях. В своей программке можно sendFIle и getFile отрефакторить, выделить дублирующуюся часть в отдельную функцию.
3.5. UI
Пришло время красивой каденции. Аккордом финальным в ней будет пользовательский интерфейс. Он к интернет-карте отношения уже не имеет, но для полноты приведу и его.
local args, opts = shell.parse(...) local function printHelp() io.stderr:write([[ Usage: clbin { get [-f] <code> <path> | put <path> } clbin get [-f] <code> <path> Download a file from clbin to <path>. If the target file exists, -f overwrites it. clbin put <path> Upload a file to clbin. ]]) os.exit(1) end if args[1] == "get" then if #args < 3 then printHelp() end local code = args[2] local path = args[3] local url = ("https://clbin.com/%s"):format(code) path = fs.concat(shell.getWorkingDirectory(), path) if not (opts.f or opts.force) and fs.exists(path) then io.stderr:write("file already exists, pass -f to overwrite\n") os.exit(2) end local status, err = getFile(url, path) if status then print("Success! The file is written to " .. path) os.exit(0) else io.stderr:write(err .. "\n") os.exit(3) end elseif args[1] == "put" then if #args < 2 then printHelp() end local path = args[2] local url, err = sendFile(path) if url then url = url:gsub("[\r\n]", "") print("Success! The file is posted to " .. url) os.exit(0) else io.stderr:write(err .. "\n") os.exit(4) end else printHelp() end
3.6. Вуаля
Осталось добавить реквайры, и мы получим полноценный клиент clbin. Результат — на гисте.
4. Как правильно установить соединение через TCP-сокет
Прошлая секция была вроде интересной, поэтому здесь тоже запилим какую-нибудь программку. @Totoro вот сделал интернет-мост Stem. Напишем для него клиент. Правильно. Опять же, особенности:
- Работает через TCP-сокет.
- Протокол бинарный.
- И асинхронный.
- А ещё сессионный: у каждого TCP-соединения есть собственный стейт.
- Доки хранятся на вики.
- При разрыве соединения клиент должен переподключиться и восстановить стейт.
Здесь снова придётся использовать все фичи интернет-карты.
4.1. Архитектура
Мы разделим программу на 2 части — фронтенд и бэкенд. Фронт будет заниматься рисованием и приёмом данных от пользователя, и им займёмся в конце и без комментариев. Бэк — поддержанием соединения и коммуникации с сервером. Это куда больше имеет отношения к гайду, рассмотрим подробнее.
Бэкенд реализуем через ООП. Создадим конструктор, напихаем методов, которые затем будет дёргать фронт.
4.2. Конструктор
Привычно вбиваем ООП-шаблон в Lua.
local newClient do local meta = { __index = {}, } function newClient(address, channels, connectionTimeout, readTimeout, maxReconnects) local obj = { __address = address, __channels = channels, __connectionTimeout = connectionTimeout, __readTimeout = readTimeout, __maxReconnects = maxReconnects; __socket = nil, __buffer = nil, __running = false, __reconnectCount = 0, } return setmetatable(obj, meta) end end
Ну, тут всё мирно пока. Начнём боевые действия с протокола.
4.3. Протокол
Для него наклепаем кучу методов, которые будут крафтить пакеты и писать их через write. Write сделаем позже. Также сразу сделаем персеры.
local meta = { __index = { __opcodes = { message = 0, subscribe = 1, unsubscribe = 2, ping = 3, pong = 4, }, __craftPacket = function(self, opcode, data) return (">s2"):pack(string.char(opcode) .. data) end, __parsePacket = function(self, packet) local opcode, data = (">I1"):unpack(packet), packet:sub(2) return self.__parsers[opcode](data) end, send = function(self, channel, message) return self:write(self:__craftPacket(self.__opcodes.message, (">s1"):pack(channel) .. message)) end, subscribe = function(self, channel) return self:write(self:__craftPacket(self.__opcodes.subscribe, (">s1"):pack(channel))) end, unsubscribe = function(self, channel) return self:write(self:__craftPacket(self.__opcodes.unsubscribe, (">s1"):pack(channel))) end, ping = function(self, message) return self:write(self:__craftPacket(self.__opcodes.ping, message)) end, pong = function(self, message) return self:write(self:__craftPacket(self.__opcodes.pong, message)) end, }, } meta.__index.__parsers = { [meta.__index.__opcodes.message] = function(data) local channel, idx = (">s1"):unpack(data) return { type = "message", channel = channel, message = data:sub(idx), } end, [meta.__index.__opcodes.subscribe] = function(data) return { type = "subscribe", channel = (">s1"):unpack(data), } end, [meta.__index.__opcodes.unsubscribe] = function(data) return { type = "unsubscribe", channel = (">s1"):unpack(data), } end, [meta.__index.__opcodes.ping] = function(data) return { type = "ping", message = data, } end, [meta.__index.__opcodes.pong] = function(data) return { type = "pong", message = data, } end, }
В коде я активно использую string.pack и string.unpack. Эти функции доступны только на Lua 5.3 и выше, но позволяют очень удобно работать с бинарными форматами.
4.4. Подключение к серверу
Прежде чем реализуем write, нужно разобраться с подключением. Оно нетривиально.
local meta = { __index = { ..., connect = function(self) local socketStream = assert(inet.socket(self.__address)) -- ① local socket = socketStream.socket -- ② local start = comp.uptime() -- ③ while true do local status, err = socket.finishConnect() if status then break end if status == nil then error(("connection failed: %s"):format(err or "unknown error")) -- ④ end if comp.uptime() >= start + self.__connectionTimeout then socket.close() error("connection failed: timed out") -- ④ end os.sleep(0.05) end self.__socket = socket -- ⑤ self.__buffer = buffer.new("rwb", socketStream) -- ⑥ self.__buffer:setTimeout(self.__readTimeout) -- ⑦ self.__buffer:setvbuf("no", 512) -- ⑧ for _, channel in ipairs(self.__channels) do -- ⑨ self:subscribe(channel) end end, }, }
- ① — я использую обёртку над component.internet. Она потом будет нужна, чтобы мы могли поместить сокет в буфер. Обращаю внимание, что вызов обёрнут в assert. Работает она так: если первое значение не nil и не false, то возвращает его, а иначе кидает ошибку, используя второе значение в качестве сообщения. Проще говоря, она превращает nil, "error message" в исключение.
- ② — а пока я вытягиваю из обёртки сокет...
- ③ — чтобы можно было проверить, установлено ли соединение. Код здесь аналогичен тому, что мы делали в прошлой секции. Не выдумываем.
-
④ — одно различие: вместо return nil, "error message" я сразу прокидываю исключение. Прежде всего потому, что ошибки мы прокидывать должны единообразно. Раз в ① кидаем исключение, и здесь делаем то же.
Почему исключение, а не return nil, "error message"? Мы вызывать connect будем из всяких мест. Так как в случае ошибок бэкенд беспомощен, то лучше прокинуть ошибку до фронтенда и не усложнять код бэка проверками на nil. Кроме того, это громкая ошибка: если забыть где-то её обработать, она запринтится на экран, случайно пропустить её или подменить какой-нибудь непонятной "attempt to index a nil value" не получится.
В конце концов, мне так проще. - ⑤ — сокет я сохраняю в поле. socket.finishConnect нам ещё понадобится.
-
⑥ — пришло время обернуть сокет в буфер. Может показаться излишним, особенно учитывая ⑧. Причины станут ясны, когда будем делать чтение.
rw — это буфер для чтения и записи. b — бинарный режим: buffer:read(2) вернёт 2 байта, а не 2 символа. Так как символы кодируются в UTF-8 и занимают 1 (латиница), 2 (кириллица, диакритика), 3 (BMP: куча письменностей, всякие графические символы, большая часть китайско-японско-корейских иероглифов) или 4 байта (всё, что не влезло в BMP, например emoji), то отсутствие этого режима может дать ощутимую разницу. В нашем случае протокол бинарный — ставим b. - ⑦ — устанавливаем таймаут для чтения. Объясню подробнее, когда будем это чтение делать.
- ⑧ — отключаем буфер для записи. Он нам не нужен.
- ⑨ — здесь же подключаемся ко всем каналам.
Итого мы получаем свойства __socket и __buffer. Сокет использовать будем, чтобы вызывать .finishConnect() и .id(). Буфер — для записи и чтения.
4.5. Запись
Теперь, разобравшись с сокетами и буферами, мы можем запросто писать в сокет. Пилим write:
local meta = { __index = { ..., write = function(self, data) return assert(self.__buffer:write(data)) end, }, }
Здесь тоже оборачиваем write в assert, чтобы кидать исключения. Причины уже пояснял.
4.6. Чтение и обработка пакета
Сначала делаем функцию readOne. Она будет пытаться читать ровно один пакет. Здесь требуется нестандартная обработка ошибок, поэтому код сложноват.
local meta = { __index = { ..., readOne = function(self, callback) -- ⑥ self.__buffer:setTimeout(0) -- ① local status, head, err = pcall(self.__buffer.read, self.__buffer, 2) self.__buffer:setTimeout(self.__readTimeout) if not status and head:match("timeout$") then return end assert(status, head) -- ② local length = (">I2"):unpack(assert(head, err)) -- ③ local packet = self:__parsePacket(assert(self.__buffer:read(length))) -- ④ if packet.type == "ping" then -- ⑤ self:pong(packet.message) end callback(self, packet) -- ⑥ return true end, } }
-
① — рассмотрим эту мишуру по порядку:
- Любой пакет stem начинается с 2 байт, которыми кодируется длина остатка. Отсюда всплывает двойка.
- Автор buffer, к сожалению, не осилил реализовать адекватную обработку ошибок. Он использует и исключения, и тихие ошибки (nil, "error message").
- В случае таймаута будет прокинуто исключение. Однако мы перед чтением поставили таймаут в 0. Если буфер не найдёт сразу 2 байта в сокете, то он сразу кинет ошибку.
- Мы хотим проверить, есть ли в сокете пакет, который бы можно было прочесть. Используем pcall. Сначала раскроем self.__buffer:read(2) как self.__buffer.read(self.__buffer, 2), а затем поместим функцию и её аргументы в pcall.
-
pcall возвращать будет сразу 3 значения по следующему принципу:
- Если на сокете есть 2 непрочитанных байта, read вернёт их без ошибок. Тогда status будет равен true, в head сохранятся эти 2 байта, а в err запишется nil.
- Если на сокете этих байтов нет, то read прокинет исключение "timeout". status установится в false, head приравняется "/lib/buffer.lua:74: timeout", а err также будет nil.
- Если же при чтении с сокета возникла другая ошибка, то read вернёт её по-тихому: status будет true, head — nil, а сообщение об ошибке уйдёт в err.
- Не думаю, что этот случай возможен, однако read может кинуть исключение и не из-за таймаута. status установится в false, а ошибка сохранится в head.
- В if мы проверяем, был ли таймаут (ситуация 1.2). В таком случае мы не кидаем исключения, а тихо выходим.
- Наконец, не забываем вернуть прежнее значение таймаута.
- ② — обрабатываем случай 1.4.
- ③ — обрабатываем случай 1.3 с помощью assert. Последний оставшийся и единственный успешный случай (1.1) также покрывается: распаковываем 2 байта в целое беззнаковое число (uint16_t).
- ④ — в ③ мы получили длину оставшегося пакета. Очевидно, надо остаток дочитать, что и делаем. Здесь уже не надо отдельно обрабатывать таймаут, достаточно assert. Считанный пакет отдаём в __parsePacket.
- ⑤ — если сервер докопался до нас своим пингом, отправим ему понгу.
- ⑥ — функция readOne принимает коллбэк. Это функция, которая будет обрабатывать все пакеты. Коллбэк будет передавать фронтенд, а бэкенд займётся минимальной обработкой, чтобы в принципе работало. Как, например, ③.
Отлично. Мы приготовили все примитивы, которые были нужны. Осталось собрать их воедино — в event loop.
4.7. Event loop и события
Ивент луп — это цикл, который ждёт событий и что-то с ними делает. Пришло время разобраться, что за события есть в OC.
Когда мы вызываем socket.read или socket.finishConnect, устанавливается "ловушка" (селектор). Она срабатывает, когда на сокет пришли новые байты. При этом компьютер получает событие internet_ready. После чего "ловушка" деактивируется до следующего вызова.
internet_ready, таким образом, — это событие, извещающее нас о том, что на сокете валяются непрочитанные данные и пора вызвать socket.read, чтобы их собрать. У события два параметра. Первый — это адрес интернет-карты. Второй — id сокета. Тот id, который возвращает socket.id(). Поэтому мы сохранили сокет в поле __socket: сейчас будем использовать его.
local meta = { __index = { ..., __run = function(self, callback) while self.__running do local e, _, id = event.pullMultiple(self.__readTimeout, "internet_ready", "stem%-client::stop") -- ① if e == "internet_ready" and id == self.__socket.id() then -- ② while self:readOne(callback) do self.__reconnectCount = 0 -- ③ end elseif e ~= "stem-client::stop" then self:ensureConnected() -- ④ end end end, stop = function(self) self.__running = false event.push("stem-client::stop") -- ⑤ end, } }
- ① — ждём события internet_ready или stem-client::stop. Так как в event.pullMultiple названия ивентов сверяются через string.match, дефис экранируем. Второй ивент нужен, чтобы принудительно прервать цикл из stop.
- ② — обрабатываем мы только internet_ready и только для нашего сокета. Проверяем.
- ③ — если поймался пакет или пакеты, то пытаемся обработать каждый в порядке прибытия. Когда мы закончили обрабатывать все пакеты, self:readOne вернёт nil, и цикл прервётся. Кстати говоря, если мы внутри цикла оказались, то соединение установилось. Не забываем отметить это.
- ④ — если же улов пуст, перепроверяем, подключены ли мы вообще.
- ⑤ — не забываем добавить метод, чтобы остановить наш цикл. Отсюда же отсылаем событие stem-client::stop.
Отлично. Теперь пришло время ловить все наши прокидываемые исключения.
4.8. Обработка ошибок
Последними 2 функциями, которые мы добавим, будут ensureConnected и run. С их помощью бэкенд будет автоматически переподключаться к серверу в случае проблем.
local meta = { __index = { ..., ensureConnected = function(self) local status, err = self.__socket.finishConnect() -- ① if status == false then error("not yet connected") end return assert(status, err or "unknown error") end, run = function(self, callback) if self.__running then -- ② return end self:connect() -- ③ self.__running = true while self.__running do -- ④ local status, err = pcall(self.__run, self, callback) -- ⑤ if not status then if self.__reconnectCount == self.__maxReconnects then -- ⑥ return nil, ("connection lost: %s; reconnect limit is reached"):format(err or "unknown error") end self.__reconnectCount = self.__reconnectCount + 1 self.__buffer:close() -- ⑦ if not pcall(self.connect, self) then -- ⑧ if self.__socket then self.__socket:close() end if self.__buffer then self.__buffer:close() end os.sleep(1) end end end self.__buffer:close() end, }, }
- ① — ensureConnected просто прокинет ошибку, которую вернёт finishConnect().
- ② — принимаем защитную позицию против дураков. Рекурсивно запускать циклы смысла нет.
- ③ — сначала подключаемся к серверу. Если всё отлично, то можно начинать.
- ④ — как и в __run, здесь мы оборачиваем код в цикл. Если вызван stop(), то сначала остановится self.__run, а затем и этот цикл.
- ⑤ — обработка исключений требует pcall. Потому что их надо словить.
- ⑥ — если мы старались-старались, но так и не смогли уложиться в self.__maxReconnects по реконнектам, кидаемся белым флагом.
- ⑦ — не забудем закрыть буфер.
- ⑧ — вспомним, что self.connect кидает исключение. Перехватываем. На всякий случае позакрываем то, что породил connect.
4.9. Фронтенд
На этом наш бэкенд готов. Поздравляю. Остаётся лишь прицепить ввод-вывод. Опять же, даю готовый код без комментариев, ибо не об этом пост.
local gpu = com.gpu local w, h = gpu.getResolution() local function writeLine(color, line) local oldFg if gpu.getForeground() ~= color then oldFg = gpu.setForeground(color) end local lines = 0 for line in text.wrappedLines(line, w + 1, w + 1) do lines = lines + 1 end gpu.copy(1, 1, w, h - 1, 0, -lines) local i = 0 for line in text.wrappedLines(line, w + 1, w + 1) do gpu.set(1, h - lines + i, (" "):rep(w)) gpu.set(1, h - lines + i, line) i = i + 1 end if oldFg then gpu.setForeground(oldFg) end end local channel = ... if not channel then io.stderr:write("Usage: stem <channel>\n") os.exit(1) end if #channel == 0 or #channel >= 256 then io.stderr:write("Invalid channel name\n") os.exit(2) end local client = newClient( "stem.fomalhaut.me:5733", {channel}, 10, 10, 5 ) require("thread").create(function() while true do term.setCursor(1, h) io.write("← ") local line = io.read() if not line then break end local status, err = pcall(client.send, client, channel, line) if not status then writeLine(0xff0000, ("Got error while sending: %s"):format(err or "unknown error")) break end end client:stop() end) client:run(function(client, evt) if evt.type == "message" then writeLine(0x66ff00, "→ " .. evt.message) elseif evt.type == "ping" or evt.type == "pong" then writeLine(0xa5a5a5, "Ping: " .. evt.message:gsub(".", function(c) return ("%02x"):format(c:byte()) end)) end end) os.exit(0)
Здесь я упускаю одну вещь: обработку ошибок в client.send. Если мы попытаемся отправить сообщение, когда у нас потеряно соединение (или до того, как оно установлено), мы или словим ошибку, или потеряем сообщение. Починить это можно, добавив очередь отправляемых пакетов, но это в разы усложнит программу, поэтому оставим так.
4.10. Готово!
Добавим реквайров... И у нас получился вполне рабочий клиент для Stem!
Код программы — на гисте.
5. В чём различие между component.internet и require("internet")
Первое — исходный компонент. Второе — обёртка над ним. У обёртки есть 3 функции:
- internet.request(url, data, headers, method) — обёртка над component.internet.request. Удобна тем, что все ошибки превращает в исключения за программиста. Кроме того, возвращаемое значение — итератор, и его можно поместить в цикл for. Тем не менее, код, который ждёт установки соединения, нужно писать самому.
- internet.socket(address, port) — промежуточная обёртка над component.internet.connect. Она используется для того, чтобы потом превратить её в буфер, как сделали мы. Сама по себе достаточно бесполезна.
- internet.open(address, port) — тоже обёртка над component.internet.connect. Она вызывает internet.socket(address, port) и сразу превращает результат в буфер. Проблема в том, что сам объект сокета использовать можно только через приватные свойства, которые могут ломаться между обновлениями OpenOS. Из-за этого функция исключительно ущербна.
Для отправки HTTP-запросов я предпочитаю использовать API компонента. TCP-сокеты же проще создавать через обёртку (internet.socket), вручную проверять подключение и так же вручную укладывать обёртку в буфер, как показано выше.
6. Конец
Самое сложное в использовании интернет-карты — это правильно обработать все ошибки. Они могут возникнуть на каждом шагу, при этом быть полноценными исключениями или тихими ошибками. Необработанные исключения крашат программу, из-за чего возникает желание весь код программы поместить в один большой pcall. Например, IRC-клиент, который на дискете поставляется, делает так. Тихие ошибки гораздо подлее. Необработанные, они тоже крашат программу, только вот сама ошибка теряется, подменяется другой (обычно "attempt to index a nil value").
В Lua обработать все ошибки — задача сложная, потому что механизм ошибок ужасен. В нормальных языках стэктрейс отделён от сообщения об ошибке, плюс каждая ошибка имеет свой тип, по которому можно безопасно определять вид ошибки. Lua этим не заморачивается: сообщение об ошибке включает позицию в коде, откуда ошибка прокинута. Есть или нет стэктрейс, зависит от выбора между pcall и xpcall. Если они находятся где-то в другой библиотеке, программист на выбор повлиять не может. В коде Stem-клиента единственный способ узнать, от таймаута ли ошибка прокинута, — матчить последние 7 символов на слово "timeout". Это эталонный костыль. Даже в JavaScript механизм лучше.
Поэтому этот пост получился не столько про интернет-карту, сколько про обработку ошибок.
- 15
21 комментарий
Рекомендуемые комментарии