Перейти к содержимому

Лидеры


Популярный контент

Показан контент с высокой репутацией 17.02.2015 во всех областях

  1. 1 балл
    Как собрать робота в 5 шагов (инструкция для самых маленьких) Абстрактное описание сборки робота я уже писал много раз, поэтому это будет короткое руководство на конкретном примере. Соберем и запустим Totoro Recursive Miner. Шаг 1. Подготовка Для создания робота нам потребуется сборщик (assembler). Чтобы он работал - подведите питание. Сборка робота потребует некоторого времени (примерно 5 минут) и энергозатрат. Шаг 2. Подбор железа Запчасти делятся на обязательные и необязательные. Детали обязательные: 1) Корпус Основа робота. Без него никуда. Для TRMiner нужен корпус 2+ уровня, потому что он должен содержать апгрейд-генератор. 2) Процессор Мощность процессора определяет количество выполняемых роботом операций в такт. Т.е. проще говоря - скорость его работы. Однако перемещаться быстрее робот не станет. Этот параметр можно улучшить "прокачав" робота (см. апгрейд-опыт). 3) Память Практика показала, что одной планки 1 уровня для нормальной работы на компьютере недостаточно. TRMiner хранит в памяти данные о жилах руды, поэтому требует как минимум две планки уровня 1.5. При меньшем количестве корректную работу не гарантирую. (Хотя возможно он будет работать.) 4) Монитор Достаточно 1 уровня. Робот не поддерживает цветные экраны. (Можно собрать робота и без экрана. Но это - для любителей хардкора.) 5) Видеокарта Также достаточно 1-го уровня. Требуется для вывода изображения на монитор. Без нее монитор будет просто черным. 6) Клавиатура Чтобы иметь возможность набрать что-то в консоли. 7) Дисковод Для установки OpenOS и копирования программы TRMiner. (Любители хардкора могут попробовать запустить робота без дисковода. Это возможно. Но я не скажу как :P ) 8) Жесткий диск Для хранения ОСи и программы. Первоэтапный диск в 1Мб хватит с головой. Это даже много. Будет занято ~20%. 9) Lua BIOS Этот чип нужен для корректной работы OpenOS. Крафтится из пустого EERPOM и книги. Детали обязательные для Totoro Recursive Miner: 10) Апгрейд-инвентарь. Робот хранит в нем добытую руду. Рекомендуется установить 2 или 3 апгрейда (т.е. 32 или 48 слотов). Больше можно не ставить, ибо обычный сундук, в который робот сбрасывает добычу имеет размер в 27 слотов. 11) Апгрейд-генератор. Нужен роботу для непрерывной работы. Робот будет сам заряжаться с его помощью, сжигая часть добытого угля. (Любители хардкора могу не ставить генератор. Программа будет работать. Вы можете заряжать робот таская за ним заряжающее устройство, или приделав пару солнечных панелей и выкопав вертикальный колодец до поверхности. ) Детали необязательные: 12) Апгрейд-опыт Позволит роботу прокачиваться во время добычи. Со временем он станет быстрее двигаться, меньше тратить энергию и медленнее ломать свой инструмент. Требует Корпуса 3-его уровня. 13) Апгрейд-батарея Ну тут все понятно. Увеличивает емкость аккумулятора. Полезная штука. Детали вредные (эксклюзив для IT 1.7.10): 14) Апгрейд-чанклоадер После включения робота, в момент опустошит его аккумулятор. На том все и закончится. Вот две рабочие конфигурации: Минимальная Рекомендуемая (UPD.: Тут уважаемый Krutoy любезно предоставил картинку, которая иллюстрирует, сколько всего ресурсов у вас уйдет на сборку рекомендуемой конфигурации робота: За что ему большое спасибо.) Уложите выбранные детали в сборщик и запускайте процесс. Шаг 3. Софт Раздобудьте дискету с OpenOS (крафтится из чистой дискеты и книги). Скачайте программу Totoro Recursive Miner на другую, чистую дискету. http://pastebin.com/L21VMm7S Для этого этапа нам потребуется компьютер. Свой или соседа, все равно. Он должен иметь выход в интернет (интернет-плата) и дисковод для дискет. Как скачать программу на новую дискету: 1) Вставить дискету 2) Посмотреть в инвентаре ее адрес. Запомнить первые его буквы-цифры. 3) Написать в консоли команду: label -a xxxx floppy Где xxxx - первые буквы-цифры ее адреса, а floppy - это будущее название (этикетка). В результате ваша дискета получит короткое и ясное название. 4) Написать команды: mount floppy fcd /f В результате вы окажетесь в корневом каталоге дискеты. 5) Скачать программу TRMiner: pastebin get L21VMm7S mine Для этого нужна интернет-плата. Программа будет сохранена на дискету под именем mine. 6) Извлеките дискету. (Также можно поискать игрока с ником Totoro и подоставать его, чтобы дал дискету с программой нахаляву. Тогда и компьютер не нужен.) Шаг 4. Установка Поставьте робота. Можно прямо на месте предполагаемой добычи руды. Чтоб два раза не ходить. Включите его и установите OpenOS (это надо сделать только один раз). Как установить OpenOS: 1) Вставить в робота зеленую дискету. 2) Включить его. 3) Написать в консоли: install 4) Он спросит на какой жесткий диск устанавливать. Напишите 1. 5) Согласитесь на рестарт (y). Теперь сбросьте программу TRMiner с дискеты на жесткий диск робота. (Можно каждый раз вставлять дискету и запускать программу прямо с нее, но это лишние действия. Зачем оно нам?) Как сбросить программу с дискеты: 1) Вставить дискету с программой в робота. 2) Убедиться, что он включен. 3) Написать в консоли робота: mount floppy fcp f/mine mine 4) Достать дискету. Все! Софт установлен. Дискеты больше в принципе не нужны. Но сохраните их на всякий случай. Шаг 4A. Настройка программы (необязательно) Для настройки программы Totoro Recursive Miner, введите в консоль команду: edit mine В двадцатой строке вы увидите константы набранные заглавными буквами: TECH_SLOTS = 6VANILLA_CHEST = truePATHWAYS = trueDROP_TRASH = false TECH_SLOTS - количество слотов с образцами "пустой породы" и сундуками. То есть тех слотов, которые не будут заняты добычей. VANILLA_CHEST - режим для работы с обычными сундуками. Есть возможность работать с сундуком Эндера. Для этого, установите константу в значение false и дайте роботу инструмент с зачарованием "Шелковое касание". В слот с сундуками положите один сундук Эндера. PATHWAYS - если true, робот проделает в шахте дорожки, для удобства хождения игрока DROP_TRASH - если true, робот будет выбрасывать булыжник и другую "пустую породу". После изменения констант, нажмите клавиши Ctrl+S (сохранение) и Ctrl+W (выход). Шаг 5. Добыча полезных ископаемых Принесите робота на место предполагаемой шахты. Поставьте робота в ее воображаемый правый передний угол, передней стороной вперед. Вот так: В инвентаре робота разложите образцы пустой породы (5 штук по дефолту). Причем (лайфхак для ускорения работы робота), кладите в порядке убывания распространенности. У меня это камень-земля-гравий-булыжник-камень Бездны (abyssal stone из RailCraft). В последний из технических слотов (6-ой по дефолту) положите сундуки (или сундук Эндера, если вы перенастроили программу). Роботу в "руку" положите кирку или бур. Чем прочнее и острее - тем лучше. Теперь включите. Введите в консоль команду такого формата: mine <длина> [ширина] [возвращаться_в_начало] Первые два параметра - числовые. Последний - true/false (Если не указать, равен false). Ура! Наконец все ездит, копает и складывает без нашего участия. Остается только иногда менять кирку. И уносить добычу. Enjoy!
  2. 1 балл
    Дроны - как керосин. Они есть везде. Еще года два назад это было просто еще одно интересное видео на Ютубе. Год назад они вдруг оказались в интернет магазинах. Затем просочились в рекламу на ТВ, и вот теперь - они есть и в OpenComputers! Пришла пора с ними разобраться. 1. Матчасть Дрон, в данном случае - квадрокоптер, это беспилотный летающий аппарат, приводимый в движение двумя парами горизонтальных винтов. Приостановливая вращение винтов с одного боку, дрон двигается в сторону (стрейф). Эти винты вращаются в разном направлении (два - по часовой срелке и два - против), за счет чего дрон не нуждается в стабилизирующем хвостовом пропеллере (как вертолет). За счет этого же он и разворачивается в воздухе, замедлив вращение однонаправленной пары винтов. Дрон обладает небольшой массой, для экономии энергии, которой у него не много (на 10-30 минут полета в среднем). (с) Википедия 2. Дроны и OpenComputers Приблизительное изображение дрона в OpenComputers =): В мире Майнкрафта дрон представляет из себя "сущность" (Entity). Это значит, что он обладает возможностями мобов Майнкрафта. (В то время как робот - это блок.) Его можно сдвинуть с места толкая. Он умеет пролетать сквозь двери и калитки (в отличии от робота). Он движется не последовательно, из блока в блок, а из точки в точку. Причем маршрут может лежать по диагонали. Конечно, движется он по кратчайшей линии, и если на пути окажется стена - дрон столкнется с нею. Программирование дрона как две капли воды похоже на программирование микроконтроллера. Вы точно так же записываете программу на EEPROM, и при необходимости меняете ее на верстаке. Только в отличии от контроллера, вам становится доступен новый компонент: drone. Подробнее об командах дрона можно узнать здесь: OpenComputers/Дрон. (Или здесь: ocdoc.wiki (англ.)) 3. План Нужна какая-нибудь несложная задача, для целей эксперимента. Используем программку send из предыдущего поста, для удаленного управления. Зальем ее на планшет. А дрон пусть... носит свиней. Будем оригинальными и непоследовательными. 1. Команда 'add X Y Z Name From'. Добавляем точку Name к маршруту, цепляя ее к точке From. Зададим дрону последовательность точек, которые образуют граф - безопасные маршруты. 2. Команда 'catch' - дрон ловит свинью. 3. Команда 'drop' - дрон выпускает свинью. 4. Команда 'to X' - дрон летит в точку Х. Для начала не будем особо заморачиваться с графом маршрутов. Это будет простое неориентированное дерево. Примерно такое: 4. Строим полигон Построим что-нибудь подходящее для тестов. Отметим ключевые точки будущего графа красными блоками. А синий блок - будет стартовой площадкой дрона. Поскольку я играю без модов на энергию, мой планшет и дрон будут работать вечно. И я не заморачиваюсь станцией подзарядки. Иначе, к схеме выше было бы необходимо добавить станцию, где дрон мог бы зарядить аккумулятор. 5. Пишем программу Скрипт для удаленного управления скопипастим из прошлого поста, подправим, чтобы умела отправлять несколько переменных и зальем на планшетик, для удобства. (Для этого, соберите планшет - не забудьте клавиатуру и видеокарту! - положите его в зарядник и запустите с подключенного компа команду install. Укажите адрес винчестера планшета - и все, что было у вас на компе автоматически загрузится в планшет, включая даже ваши собственные программы.) local com = require('component') local modem = com.modem local args = {...} modem.broadcast(27, table.unpack(args)) io.write("Message: ") print(table.unpack(args)) Далее - более сложная часть. Программа дрона. Программа предназначена для EEPROM. Значит соблюдаем те же правила: используем computer, component и API имеющихся у дрона компонентов. Включая его родной компонент drone. В нашем случае, дрон вооружен апргейдом-лассо (leash) и беспроводной сетевой картой (modem) для связи. Стоит отметить, что процесс отладки программы (по крайней мере в текущем билде мода) достаточно неудобен. В случае ошибки дрон отказывается включиться, издав тонкий писк, и не выводя никакой информации. Получить отчет об ошибке при помощи анализатора не выйдет - ведь Shift+ПКМ просто снимает дрона. Автор обещал в скором времени это исправить. Ну а пока - помучаемся. Отредактировать чип в стороннем редакторе, не вынимая его из дрона тоже не выйдет. В отличии от файловых систем, которые имеют удобную папку вида /saves/World/opencomputers/xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx/, чипы EEPROM хранят свой код в NBT тегах предмета. Этим же обусловлено и ограничение размера кода в 4 килобайта. 5.1. Основная часть Это цикл который ждет указаний, а затем запускает соответствующую функцию. drone = component.proxy(component.list("drone")()) modem = component.proxy(component.list("modem")()) leash = component.proxy(component.list("leash")()) modem.open(27) route = {} path = {} current = "" while true do name, _, sender, _, _, message, x, y, z, point, from = computer.pullSignal(1) if name == "modem_message" then if message == 'add' then add(tonumber(x), tonumber(y), tonumber(z), point, from) if current == "" then current = point end elseif message == 'to' then to(x) elseif message == 'catch' then catch() elseif message == 'drop' then drop() end end if #path > 0 and drone.getOffset() < 1 then drone.move(route[path[#path]].x-route[current].x, route[path[#path]].y-route[current].y, route[path[#path]].z-route[current].z) current = path[#path] path[#path] = nil end end modem.close() Чтобы облегчить себе жизнь (и тестирование bios), вы можете сделать так: напишите заглушку для компонента drone (и других, если надо), вроде этой: http://pastebin.com/EVYzN5Bj Просто скопируйте в папку на компьютере, где вы пишете программу для дрона. Затем измените первые строки программы следующим образом: component = require('component') computer = require('computer') drone = require('drone') modem = component.modem -- leash = component.proxy(component.list("leash")()) Затем добавьте в цикл условие выхода по нажатию кнопки: if name == 'key_down' then break end И вы можете просто запустить вашу программу для дрона на компьютере. Разумеется полноценной эмуляцией дрона тут и не пахнет, зато очень удобно отслеживать глупые синтаксические и логические ошибки. Как устроен код основного цикла? Переменная route - хранит таблицу "вейпоинтов" (waypoints). Это вершины графа и информация о связях между ними. Переменная path - хранит путь от текущей вершины до цели. Переменная current - отмечает текущее местоположение дрона в графе. В цикле мы читаем получаемые сообщения и вызываем соответствующие функции. Первая переданная вершина считается дроном текущей. Во второй части цикла происходит проверка. Если путь до цели - не пуст (это значит, что дрону надо куда-то лететь) и дрон уже долетел до текущей вершины (getOffset()), то программа берет следующую вершину из path, отправляет дрона к ней и объявляет ее текущей. 5.2. Функции-команды Теперь последовательно добавим функции для каждой команды. function add(x, y, z, name, from) route[name] = {x=x, y=y, z=z, link = {}} if from ~= nil then if route[name] == nil or route[from] == nil then drone.setStatusText("Error!") else table.insert(route[name].link, from) table.insert(route[from].link, name) end end end Тут все просто. Пишем вершину в список. Если он связана с другой вершиной (from ~= nil), то в специальную табличку link заносим две связи: из name в from, и из from в name. function search(target, point, prev) for key, name in pairs(route[point].link) do if name == target then table.insert(path, point) return true end end for key, name in pairs(route[point].link) do if name ~= prev then if search(target, name, point) then table.insert(path, point) return true end end end return false end function to(name) path = {} table.insert(path, name) search(name, current) end Функция to обнуляет старый путь (на всякий случай), затем вставляет в него цель пути (name) и запускает функцию search, которая рекурсивно ищет и записывает остальные промежуточные вершины на маршруте от name до current (текущей локации). Функция search сделана достаточно примитивно (возможно вы предложите более эффективный способ?). Поскольку мы договорились, в целях упрощения использовать граф-дерево (не содержаший петель), от любой точки к другой существует один и только один маршрут, который функция и находит перебором связанных вершин. function catch() for c = 2, 5 do if leash.leash(c) then return true end end return false end function drop() leash.unleash() end Тут все элементарно. 6. Подготовка Пишем программу на дрона, заряжаем планшет и выдвигаемся в зону действий. Дрона ставим на синий куб (стартовая площадка) и включаем. После уточнения на местности, составляем карту вейпоинтов и строим на бумажке будущий граф: Для каждого загона добавлены две точки - name и name_up. Основные "трассы" дрона лежат на высоте в 6 блоков. А в каждом загоне спускаются к земле. (Чтобы заарканить животное, выстреливая лассо вбок, дрону желательно находиться на одном уровне с жертвой). С планшета вносим координаты в память дрона. Примерно так: Главное - не ошибиться. Т.к. в код не была добавлена защита "от дурака" =) Алгоритм позволяет добавлять вершину "на лету". В любой момент вы можете добавить еще одну ветку к схеме. Теперь все готово к тесту. 7. Запуск Все готово. Проверим, как он двигается. Введем send to sheeps в консоль планшета. Дрон уверенно поднимается в воздух и опускается в загоне в овцами. Теперь введем send to pigs. Функция search снова вычислит путь и робот переместится в указанную вершину: Функции catch и drop тоже работают штатно =) Хотя и не лишены некоторых глюков (ведь физика веревки не просчитывается): 8. Итоги а) Дрон - любопытная штуковина. б) Полный код прошивки. использованный в этом посте - здесь: http://pastebin.com/Cy1UR6vy в) Навигация по вейпоинтам - интересный и очень распространенный способ организации сложного движения. Схему можно усложнить - опционально добавлять только одну связь в таблицу link - тогда получатся ребра с односторонним движением. Добавить петли, оптимизировать поиск кратчайшего пути. Еще можно облегчить правление дроном - хранить все команды для конкретной задачи в виде файла-скрипта, который запускать одной командой и т.д. Enjoy!
Эта таблица лидеров рассчитана в Москва/GMT+03:00
×
×
  • Создать...